Simulation-based nozzle density optimization for maximized efficacy of a machine vision–based weed control system for applications in turfgrass settings

Author:

Petelewicz PawełORCID,Zhou QiyuORCID,Schiavon MarcoORCID,MacDonald Gregory E.ORCID,Schumann Arnold W.,Boyd Nathan S.ORCID

Abstract

Abstract Targeted spraying application technologies have the capacity to drastically reduce herbicide inputs, but to be successful, the performance of both machine vision–based weed detection and actuator efficiency needs to be optimized. This study assessed (1) the performance of spotted spurge recognition in ‘Latitude 36’ bermudagrass turf canopy using the You Only Look Once (YOLOv3) real-time multiobject detection algorithm and (2) the impact of various nozzle densities on model efficiency and projected herbicide reduction under simulated conditions. The YOLOv3 model was trained and validated with a data set of 1,191 images. The simulation design consisted of four grid matrix regimes (3 × 3, 6 × 6, 12 × 12, and 24 × 24), which would then correspond to 3, 6, 12, and 24 nonoverlapping nozzles, respectively, covering a 50-cm-wide band. Simulated efficiency testing was conducted using 50 images containing predictions (labels) generated with the trained YOLO model and by applying each of the grid matrixes to individual images. The model resulted in prediction accuracy of an F1 score of 0.62, precision of 0.65, and a recall value of 0.60. Increased nozzle density (from 3 to 12) improved actuator precision and predicted herbicide-use efficiency with a reduction in the false hits ratio from ∼30% to 5%. The area required to ensure herbicide deposition to all spotted spurge detected within images was reduced to 18%, resulting in ∼80% herbicide savings compared to broadcast application. Slightly greater precision was predicted with 24 nozzles but was not statistically different from the 12-nozzle scenario. Using this turf/weed model as a basis, optimal actuator efficacy and herbicide savings would occur by increasing nozzle density from 1 to 12 nozzles within the context of a single band.

Publisher

Cambridge University Press (CUP)

Reference35 articles.

1. Medrano, R (2021) Feasibility of real-time weed detection in turfgrass on an Edge device. MS dissertation, California State University. 59 p

2. A systematic analysis of performance measures for classification tasks;Sokolova;Inf Process Manag,2009

3. Allwright, S (2022) What is a good F1 score and how do I interpret it? http://stephenallwright.com/good-f1-score/. Accessed: September 15, 2023

4. Germination of spotted spurge (Chamaesyce maculata) seeds in response to different environmental factors;Asgarpour;Weed Sci,2015

5. A review on remote sensing of weeds in agriculture;Thorp;Precis Agric,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3