Testing a model of biopsychosocial successful aging based on socioemotional selectivity theory in the second half of life

Author:

Soylu CemORCID,Ozekes Banu Cengelci

Abstract

ABSTRACT Objectives: We first tested a successful aging model, which included biomedical and psychosocial indicators. Next, we tested the assumptions on the social network characteristics of the socioemotional selectivity theory in a model where the outcome variable is successful aging. Design: Cross-sectional study. Setting: The study was carried out in municipal centers and nursing homes. Participants: A total of 478 adults (Mean age = 72.11, SD = 10.43) were enrolled. Measurements: Psychological Well-being Scale, Life Satisfaction Scale, Future Time Perspective, Katz Index of Independence in Activities of Daily Living Scale, Lawton Instrumental Activities of Daily Living Scale, and Mini-Mental State Examination Test were completed. Results: The structural equation modeling analyses indicated that higher social satisfaction mediated the association of the future time perspective with successful aging. Furthermore, there was another significant indirect sequential path from the future time perspective to successful aging. The path was first via the number of close social partners and second, social satisfaction. Conclusions: The findings highlight the importance of social satisfaction in the process of successful aging and provide novel evidence that the socioemotional selectivity theory can be considered as a biopsychosocial model of successful aging in future studies.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Gerontology,Clinical Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3