Individual Differences in EEG Spectral Power Reflect Genetic Variance in Gray and White Matter Volumes

Author:

Smit Dirk J. A.,Boomsma Dorret I.,Schnack Hugo G.,Hulshoff Pol Hilleke E.,de Geus Eco J. C.

Abstract

The human electroencephalogram (EEG) consists of oscillations that reflect the summation of postsynaptic potentials at the dendritic tree of cortical neurons. The strength of the oscillations (EEG power) is a highly genetic trait that has been related to individual differences in many phenotypes, including intelligence and liability for psychopathology. Here, we investigated whether brain anatomy underlies these EEG power differences by correlating it to gray and white matter volumes (GMV, WMV), and additionally investigated whether this association can be attributed to genes or environmental factors. EEG was measured in a sample of 405 young adult twins and their siblings, and power in the theta (~4 Hz), alpha (~10 Hz), and beta (~20 Hz) frequency bands determined. A subset of 121 subjects were also scanned in a 1.5 T MRI scanner, and gray and white matter volumes defined as the total of cortical and subcortical volumes, excluding cerebellum. Both MRI-based volumes and EEG power spectra were highly heritable. GMV and WMV correlated .25 to .29 with EEG power for the slower oscillations (theta, alpha). Moreover, these phenotypic correlations largely reflected genetic covariation, irrespective of oscillation frequency and volume type. Genetic correlations (.31 < rA < .43) revealed that only moderate proportions of the heritable variance overlapped between MRI volumes and EEG power. The results suggest that MRI volumes and EEG power share genetic sources of variation, which may reflect such processes as myelination, synaptic density, and dendritic outgrowth.

Publisher

Cambridge University Press (CUP)

Subject

Genetics (clinical),Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3