Quaternary environmental change in Cyrenaica evidenced by U-Th, ESR and OSL dating of coastal alluvial fan sequences

Author:

Rowan John S.,Black Stuart,Macklin Mark G.,Tabner Brian J.,Dore John

Abstract

AbstractThe coastal alluvial fan sequences of Cyrenaica are important archives of environmental change data, but hitherto relatively little has been known about their formative processes and rates. The Wadi Zewana coastal fan near Tolmeita was studied and a range of dating techniques (U-Th, ESR and OSL) applied to selected components of the stratigraphy. The sequence spans the last two global glacial periods separated by an Interglacial. Cemented alluvial fan gravel units yielded U-Th leachate-residue ages of 201 ± 18 ka, 179 ± 15 ka and 138 ± 8 ka respectively. The fan toe units are interdigitated with bioclastic beach rock deposits dated to 150 ± 10.9 ka corresponding to an Interglacial high stand in sea level and marine recession sequence featuring transgressive lag gravels, beach sand and cemented aeolian dunes dated to 121 ± 8 ka. Within the Wadi Zewana catchment a complex cut and fill history is evidenced. Aggradation phases dated to 76 ± 4 ka, 42.1 ± 5.1 ka and 12.5 ± 1.5 ka are broadly coincident with global glacials and stadials, whilst during the Last Interglacial and successive interstadials the drainage system underwent entrenchment, manifested on the coastal plain as telescopic fan segmentation and associated fan head trenching.

Publisher

Cambridge University Press (CUP)

Subject

History,Cultural Studies

Reference29 articles.

1. Sea-level lowstand in the eastern Mediterranean: Late Pleistocene coastal terraces offshore northern Israel;Belknap;Journal of Coastal Research,1999

2. River response to high-frequency climate oscillations in southern Europe over the past 200 k.y.

3. Mediterranean pluvial periods and sapropel formation over the last 200 000 years

4. Quality assurance in luminescence dating

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3