Using weed emergence and phenology models to determine critical control windows for winter-grown carinata (Brassica carinata)

Author:

Reinhardt Piskackova Theresa A.ORCID,Leon Ramon G.ORCID

Abstract

AbstractAdoption of the new biofuel crop carinata (Brassica carinata A. Braun) in the southeastern United States will largely hinge on sound agronomic recommendations that can be economically incorporated into and are compatible with existing rotations. Timing of weed control is crucial for yield protection and long-term weed seedbank management, but predictive weed emergence models have not been as widely studied in winter crops for this purpose. In this work, we use observed and predicted emergence of a winter annual weed community to create recommendations for timing weed control according to weed and crop phenology progression. Observed emergence timings for four winter annual weed species in North Carolina were used to validate previously published models developed for winter annual weeds in Florida by accounting for temperature and daylength differences, and this approach explained more than 70% of the variability in observed emergence. Emergence of stinking chamomile (Anthemis cotula L.) and cutleaf evening primrose (Oenothera laciniata Hill.) followed biphasic patterns comparable to wild radish (Raphanus raphanistrum L.), which were predicted with previously published models accounting for 82% and 84% of the variation, respectively. Using the predictive models for weed emergence and carinata growth, critical control windows (CCW) were estimated for Clayton, NC, and Jay, FL, according to different planting dates. The results demonstrated how early planting coincided with the emergence of three competitive winter weeds, but early control could also remove a large proportion of the predicted emergence of these species. The framework for how planting timing will affect winter weed emergence and crop growth will be an instructive decision-making tool to help prepare farmers to manage weeds in carinata, but it could also be useful for weed management planning for other winter crops.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3