A unified framework for the analysis of germination, emergence, and other time-to-event data in weed science

Author:

Onofri AndreaORCID,Mesgaran Mohsen B.ORCID,Ritz ChristianORCID

Abstract

AbstractGermination and emergence assays represent the most notable examples of time-to-event data in agriculture and related disciplines. In spite of the peculiar characteristics of this type of data, there has been little effort to establish a specific and comprehensive framework for their analyses. Indeed, a brief survey of the literature shows that germination and emergence data, along with other phenological measurements such as flowering time, have been analyzed through myriad approaches, giving rise to confusion and uncertainty among scientists and practitioners as to what may represent the best statistical practice. This lack of coherence in statistical approach may reduce the efficiency of research, while making the communication of results and the cross-study comparisons extremely challenging. Here, we attempt to provide a coherent framework and protocol for the analyses of germination/emergence and other time-to-event data in weed science and related disciplines, together with a software implementation in the form of a new R package. We propose a similar approach to biological assays in ecotoxicology, based on: (1) fitting a time-to-event model to describe the whole time course of events; (2) comparing time-to-event curves across experimental treatments, and (3) deriving further information from the fitted model to better focus on some traits of interest. The most appropriate methods to accomplish this procedure were carefully selected from the framework of survival analysis and related sources and were modified to comply with the specific needs of weed, seed, and plant sciences. Finally, they were implemented in the new R package drcte. In this article, we describe the procedure and its limitations by way of providing examples of several types of germination/emergence assays. We highlight that our proposed procedure can also serve as the first step of data analyses, with its output subsequently submitted to traditional or meta-analytic approaches.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3