Use of open-source object detection algorithms to detect Palmer amaranth (Amaranthus palmeri) in soybean

Author:

Barnhart Isaac H.ORCID,Lancaster SarahORCID,Goodin DouglasORCID,Spotanski Jess,Dille J. AnitaORCID

Abstract

AbstractSite-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth (Amaranthus palmeri S. Watson) in soybean [Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-source algorithms in detecting A. palmeri, and (3) evaluate the relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. palmeri. A total of 1,108 and 392 images were taken aerially and at ground level, respectively, between May 27 and July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean average precision score of 0.77. For both A. palmeri and soybean detections within this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower confidence threshold of 0.15 increased the likelihood of species detection, but also increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to identify A. palmeri in a data set paired with measured growth features. Linear regression models predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference101 articles.

1. The role of the growth stage of weeds in their response to reduced herbicide doses;Kieloch;ACTA Agrobotanica,2011

2. Shung, KP (2018) Accuracy, Precision, Recall or F1? https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9. Accessed: April 28, 2022

3. TensorFlow (2017) Resource Exhausted: OOM when Allocating Tensor with Shape [2304,384] Traceback (most recent call last): #1993. https://github.com/tensorflow/models/issues/1993#issue-244306864. Accessed: July 20, 2022

4. Xu, W , Matzner, S (2018) Underwater fish detection using deep learning for water power applications. Pages 313–318 in Proceedings of the 2018 International Conference on Computer Science and Computational Intelligence (CSCI). Las Vegas, NV: Institute of Electrical and Electronics Engineers

5. Jocher, G (2022a) yolov5. https://github.com/ultralytics/yolov5. Accessed: February 3, 2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3