Resistance to 2,4-D in Palmer amaranth (Amaranthus palmeri) from Kansas is mediated by enhanced metabolism

Author:

Shyam ChandrimaORCID,Peterson Dallas E.,Jugulam MithilaORCID

Abstract

AbstractA Palmer amaranth (Amaranthus palmeri S. Watson) population (KCTR: KS Conservation Tillage Resistant) collected from a conservation tillage field was confirmed with resistance to herbicides targeting at least six sites of action, including 2,4-D. The objectives of this research were using KCTR A. palmeri to investigate (1) the level of 2,4-D resistance, (2) 2,4-D absorption and translocation profiles, (3) the rate of 2,4-D metabolism compared with 2,4-D–tolerant wheat (Triticum aestivum L.), and (4) the possible role of cytochrome P450s (P450s) in mediating resistance. Dose–response experiments were conducted to assess the level of 2,4-D resistance in KCTR compared with susceptible plants, KSS (KS 2,4-D susceptible) and MSS (MS 2,4-D susceptible). KSS, MSS, and KCTR plants were treated with [14C]2,4-D to determine absorption, translocation, and metabolic patterns. Additionally, whole-plant dose–response assays were conducted by treating KCTR and KSS plants with P450 inhibitors (malathion, piperonyl butoxide [PBO]) before 2,4-D application. Dose–response experiments indicated a 6- to 11-fold 2,4-D resistance in KCTR compared with susceptible plants. No difference was found in percent [14C]2,4-D absorption among the populations. However, 10% less and 3 times slower translocation of [14C]2,4-D was found in KCTR compared with susceptible plants. Importantly, [14C]2,4-D was metabolized faster in KCTR than susceptible plants. At 24, 48, and 72 h after treatment (HAT), KCTR metabolized ∼20% to 30% more [14C]2,4-D than susceptible plants. KCTR plants and wheat generated metabolites with similar polarity. Nonetheless, at 24 HAT, ∼70% of [14C]2,4-D was metabolized in wheat, compared with only 30% in KCTR A. palmeri. Application of malathion before 2,4-D increased the sensitivity to 2,4-D in KCTR, suggesting involvement of P450s in mediating 2,4-D metabolism. However, no such impact of PBO was documented. Overall, this study confirms that enhanced metabolism is the primary mechanism of 2,4-D resistance in KCTR.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3