A Monte Carlo evaluation of growth mixture modeling

Author:

Shader Tiffany M.ORCID,Beauchaine Theodore P.ORCID

Abstract

Abstract Growth mixture modeling (GMM) and its variants, which group individuals based on similar longitudinal growth trajectories, are quite popular in developmental and clinical science. However, research addressing the validity of GMM-identified latent subgroupings is limited. This Monte Carlo simulation tests the efficiency of GMM in identifying known subgroups (k = 1–4) across various combinations of distributional characteristics, including skew, kurtosis, sample size, intercept effect size, patterns of growth (none, linear, quadratic, exponential), and proportions of observations within each group. In total, 1,955 combinations of distributional parameters were examined, each with 1,000 replications (1,955,000 simulations). Using standard fit indices, GMM often identified the wrong number of groups. When one group was simulated with varying skew and kurtosis, GMM often identified multiple groups. When two groups were simulated, GMM performed well only when one group had steep growth (whether linear, quadratic, or exponential). When three to four groups were simulated, GMM was effective primarily when intercept effect sizes and sample sizes were large, an uncommon state of affairs in real-world applications. When conditions were less ideal, GMM often underestimated the correct number of groups when the true number was between two and four. Results suggest caution in interpreting GMM results, which sometimes get reified in the literature.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Developmental and Educational Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3