Abstract
AbstractTheoretical models of attention-deficit/hyperactivity disorder implicate neurocognitive dysfunction, yet neurocognitive functioning covers a range of abilities that may not all be linked with inattention. This study (a) investigated the single nucleotide polymorphism (SNP) heritability (h2SNP) of inattention and aspects of neurocognitive efficiency (memory, social cognition, executive function, and complex cognition) based on additive genome-wide effects; (b) examined if there were shared genetic effects among inattention and each aspect of neurocognitive efficiency; and (c) conducted an exploratory genome-wide association study to identify genetic regions associated with inattention. The sample included 3,563 participants of the Philadelphia Neurodevelopmental Cohort, a general population sample aged 8–21 years who completed the Penn Neurocognitive Battery. Data on inattention was obtained with the Kiddie Schedule of Affective Disorders (adapted). Genomic relatedness matrix restricted maximum likelihood was implemented in genome-wide complex trait analysis. Analyses revealed significant h2SNP for inattention (20%, SE = 0.08), social cognition (13%, SE = 0.08), memory (17%, SE = 0.08), executive function (25%, SE = 0.08), and complex cognition (24%, SE = 0.08). There was a positive genetic correlation (0.67, SE = 0.37) and a negative residual covariance (−0.23, SE = 0.06) between inattention and social cognition. No SNPs reached genome-wide significance for inattention. Results suggest specificity in genetic overlap among inattention and different aspects of neurocognitive efficiency.
Publisher
Cambridge University Press (CUP)
Subject
Psychiatry and Mental health,Developmental and Educational Psychology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献