The breaking of transient inertio-gravity waves in a shear flow using the Gaussian beam approximation

Author:

Rodas C.,Pulido M.

Abstract

AbstractThe propagation of transient inertio-gravity waves in a shear flow is examined using the Gaussian beam formulation. This formulation assumes Gaussian wavepackets in the spectral space and uses a second-order Taylor expansion of the phase of the wave field. In this sense, the Gaussian beam formulation is also an asymptotic approximation like spatial ray tracing; however, the first one is free of the singularities found in spatial ray tracing at caustics. Therefore, the Gaussian beam formulation permits the examination of the evolution of transient inertio-gravity wavepackets from the initial time up to the destabilization of the flow close to the critical levels. We show that the transience favours the development of the dynamical instability relative to the convective instability. In particular, there is a well-defined threshold for which small initial amplitude transient inertio-gravity waves never reach the convective instability criterion. This threshold does not exist for steady-state inertio-gravity waves for which the wave amplitude increases indefinitely towards the critical level. The Gaussian beam formulation is shown to be a powerful tool to treat analytically several aspects of inertio-gravity waves in simple shear flows. In more realistic shear flows, its numerical implementation is readily available and the required numerical calculations have a low computational cost.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3