Author:
van Eysden Cornelis A.,Melatos A.
Abstract
AbstractThe coupled dynamic response of a rigid container filled with a two-component superfluid undergoing Ekman pumping is calculated self-consistently. The container responds to the back-reaction torque exerted by the viscous component of the superfluid and an arbitrary external torque. The resulting motion is described by a pair of coupled integral equations for which solutions are easily obtained numerically. If the container is initially accelerated impulsively then set free, it relaxes quasi-exponentially to a steady state over multiple time scales, which are a complex combination of the Ekman number, superfluid mutual friction coefficients, the superfluid density fraction, and the varying hydrodynamic torque at different latitudes. The spin-down of containers with relatively small moments of inertia (compared with that of the contained fluid) depends weakly on the above parameters and occurs faster than the Ekman time. When the fluid components are initially differentially rotating, the container can ‘overshoot’ its asymptotic value before increasing again. When a constant external torque is applied, the superfluid components rotate differentially and non-uniformly in the long term. For an oscillating external torque, the amplitude and phase of the oscillation are most sensitive to the driving frequency for containers with relatively small moments of inertia. Applications to superfluid helium experiments and neutron stars are also discussed.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pulsar Glitches: A Review;Universe;2022-12-01
2. Neutron stars in the laboratory;International Journal of Modern Physics D;2017-04-06
3. Hydrodynamic simulations of pulsar glitch recovery;Monthly Notices of the Royal Astronomical Society;2016-05-03
4. Oscillatory superfluid Ekman pumping in helium II and neutron stars;Journal of Fluid Mechanics;2015-10-16
5. SHORT-PERIOD PULSAR OSCILLATIONS FOLLOWING A GLITCH;The Astrophysical Journal;2014-06-24