Growth of multiparticle aggregates in sedimenting suspensions

Author:

Zinchenko Alexander Z.,Davis Robert H.

Abstract

AbstractThe process of multiparticle aggregation in a dilute sedimenting suspension is rigorously simulated, with precise hydrodynamical interactions. The primary particles are monodisperse non-Brownian spheres at zero Reynolds number, with short-range molecular attractions. The rigid aggregates grow, as they settle downwards, by sequential particle addition – a valid assumption for dilute suspensions during the initial stages. The growth starts from doublet–particle interaction, but the indeterminate initial doublet concentration does not affect the results for cluster geometry and settling velocity. A new particle is generated far below a cluster with uniform probability density, and many trial particle–cluster relative trajectories are computed with high accuracy until a collision is found. The new cluster is then assumed to be rigid and allowed to reach a steady sedimentation regime (which is a spiral motion around the axis of steady rotation, ASR) before another particle is added, and so on. The ASR is typically far away from the cluster centre of mass. The Stokes flow solution algorithm for particle–cluster interaction works very efficiently with high-order multipoles (to order 100) and is extended to arbitrarily small particle–cluster separations by a geometry perturbation adapted from the conductivity simulations of Zinchenko (Phil. Trans. R. Soc. Lond. A, 1998, vol. 356, pp. 2953–2998). Clusters are generated to $N=100$ spheres, with extensive averaging over many growth realizations. The fractal scaling $\sim N^{0.48}$ for the cluster settling speed is quickly attained once $N\geq 25$, and the exponent 0.48 is practically independent of the strength of molecular forces. The cluster fractal dimension is predicted to be $d_f=1.91\pm 0.02$ (in contrast to the existing views that sequential addition can only produce high-$d_f$ clusters). Several average characteristics of the cluster size are also computed. The theoretical settling speed has no adjustable parameters and agrees reasonably well with prior experiments for a moderately polydisperse system in a broad range of cluster sizes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3