Author:
Kofman N.,Mergui S.,Ruyer-Quil C.
Abstract
AbstractThe stability of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\gamma _2$ travelling waves at the surface of a film flow down an inclined plane is considered experimentally and numerically. These waves are fast, one-humped and quasi-solitary. They undergo a three-dimensional secondary instability if the flow rate (or Reynolds number) is sufficiently high. Rugged or scallop wave patterns are generated by the interplay between a short-wave and a long-wave instability mode. The short-wave mode arises in the capillary region of the wave, with a mechanism of capillary origin which is similar to the Rayleigh–Plateau instability, whereas the long-wave mode deforms the entire wave and is triggered by a Rayleigh–Taylor instability. Rugged waves are observed at relatively small inclination angles. At larger angles, the long-wave mode predominates and scallop waves are observed. For a water film the transition between rugged and scallop waves occurs for an inclination angle around 12°.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献