Spanwise reflection symmetry breaking and turbulence control: plane Couette flow

Author:

Chagelishvili G.,Khujadze G.,Foysi H.,Oberlack M.

Abstract

AbstractWe propose and analyse a new strategy of shear flow turbulence control that can be realized by the following steps: (i) imposing specially designed seed velocity perturbations, which are non-symmetric in the spanwise direction, at the walls of a flow; (ii) the configuration of the latter ensures a gain of shear flow energy and the breaking of turbulence spanwise reflection symmetry: this leads to the generation of spanwise mean flow; (iii) that changes the self-sustained dynamics of turbulence and results in a considerable reduction of the turbulence level and the production of turbulent kinetic energy. In fact, by this strategy the shear flow transient growth mechanism is activated and the formed spanwise mean flow is an intrinsic, nonlinear composition of the controlled turbulence and not directly introduced in the system. In the present paper, a weak near-wall volume forcing is designed to impose the velocity perturbations with required characteristics in the flow. The efficiency of the proposed scheme has been demonstrated by direct numerical simulation using plane Couette flow as a representative example. A promising result was obtained: after a careful parameter selection, the forcing reduces the turbulence kinetic energy and its production by up to one-third. The strategy can be naturally applied to other wall-bounded flows, e.g. channel and boundary-layer flows. Of course, the considered volume force is theoretical and hypothetical. Nevertheless, it helps to gain knowledge concerning the design of the seed velocity field that is necessary to be imposed in the flow to achieve a significant reduction of the turbulent kinetic energy. This is convincing with regard to a new control strategy, which could be based on specially constructed blowing/suction or riblets, by employing the insight gained by the comprehension of the results obtained using the investigated methodology in this paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Changes in turbulent dissipation in a channel flow with oscillating walls

2. Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction

3. Lundbladh, A. , Henningson, D.  & Johansson, A. V. 2004 An efficient spectral integration method for the solution of the navier-stokes equations. Tech. Rep., Department of Mechanics, KTH, S-100 44, Stockholm, Sweden.

4. Very large structures in plane turbulent Couette flow

5. Physics and control of wall turbulence for drag reduction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3