Intermittency route to thermoacoustic instability in turbulent combustors

Author:

Nair Vineeth,Thampi Gireeshkumaran,Sujith R. I.

Abstract

AbstractThe dynamic transition from combustion noise to combustion instability was investigated experimentally in two laboratory-scale turbulent combustors (namely, swirl-stabilized and bluff-body-stabilized backward-facing-step combustors) by systematically varying the flow Reynolds number. We observe that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high-amplitude periodic oscillations that appear in a near-random fashion amidst regions of aperiodic low-amplitude fluctuations. These excursions to periodic oscillations last longer in time as operating conditions approach instability and finally the system transitions completely into periodic oscillations. A continuous measure to quantify this bifurcation in dynamics can be obtained by defining an order parameter as the probability of the signal amplitude exceeding a predefined threshold. A hysteresis zone was observed in the bluff-body-stabilized configuration that was absent in the swirl-stabilized configuration. The recurrence properties of the dynamics of intermittent burst oscillations were quantified using recurrence plots and the distribution of the aperiodic phases was examined. From the statistics of these aperiodic phases, robust early-warning signals of an impending combustion instability may be obtained.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. Combustion noise

2. Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner;Komarek;Trans. ASME: J. Engng Gas Turbines Power,2010

3. Generation of Low-Frequency Alternative Flame Behaviors in a Lean Premixed Combustor

4. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor

Cited by 241 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3