Abstract
AbstractWe present an analytical theory of scattering of tide-generated internal gravity waves in a continuously stratified ocean with a randomly rough seabed. Based on a linearized approximation, the idealized case of constant mean sea depth and Brunt–Väisälä frequency is considered. The depth fluctuation is assumed to be a stationary random function of space, characterized by small amplitude and a correlation length comparable to the typical wavelength. For both one- and two-dimensional topographies the effects of scattering on the wave phase over long distances are derived explicitly by the method of multiple scales. For one-dimensional topography, numerical results are compared with Bühler & Holmes-Cerfon (J. Fluid Mech., vol. 678, 2011, pp. 271–293), computed by the method of characteristics. For two-dimensional topography, new results are presented for both statistically isotropic and anisotropic cases.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献