Numerical investigation of the generation and growth of coherent flow structures in a triggered turbulent spot

Author:

Brinkerhoff Joshua R.,Yaras Metin I.

Abstract

AbstractMultiple mechanisms for the regeneration of hairpin-like coherent flow structures in transitional and turbulent boundary layers have been proposed in the published literature, but a complete understanding of the typical topologies of coherent structures observed in the literature has not yet been achieved. To contribute to this understanding, a numerical study is performed of a turbulent spot triggered in a zero-pressure-gradient laminar boundary layer by a pulsed, transverse jet. Two direct numerical simulations (DNS) capture the growth of the spot into a mature turbulent region containing a large number of coherent vortical flow structures. The boundary-layer Reynolds number based on the test-surface streamwise length is $\mathit{Re}_{L}=309\,200$. The internal structure of the spot is characterized by densely spaced packets of hairpin vortices. Lateral growth of the spot occurs as new hairpin vortices form along the spanwise edges of the spot. The formation of these hairpin vortices is attributed to unstable shear layers that develop in the streamwise–spanwise plane due to the wall-normal motions induced by the streamwise oriented legs of hairpin vortices within the spot. Results are presented that highlight the mechanism by which the instability of such shear layers forms wavepackets of hairpin vortices; how the formation of these vortices produces a flow environment that promotes the creation of new hairpin vortices; and how the newly created hairpin vortices impact the production of turbulence kinetic energy in the flow region surrounding the spot. A quantitative description of the hairpin-vortex regeneration mechanism based on the transport of the instantaneous vorticity vector is presented to illustrate how the velocity and vorticity fields interact with the local strain rates to promote the growth of coherent vortical structures. The simulation results also shed light on a mechanism that seems to have a dominant influence on the formation of the calmed region in the wake of the turbulent spot.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3