Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton

Author:

Peng Zhangli,Mashayekh Adel,Zhu Qiang

Abstract

AbstractInspired by the recent experiment on erythrocytes (red blood cells, RBCs) in weak shear flows by Dupireet al.(Proc. Natl Acad. Sci. USA, vol. 109, 2012, pp. 20808–20813), we conduct a numerical investigation to study the dynamics of RBCs in low-shear-rate flows by applying a multiscale fluid–structure interaction model. By employing a spheroidal stress-free state in the cytoskeleton, we are able to numerically predict an important feature, namely that the cell maintains its biconcave shape during tank-treading motions. Furthermore, we numerically confirm the hypothesis that, as the stress-free state approaches a sphere, the threshold shear rates corresponding to the establishment of tank treading decrease. By comparing with the experimental measurements, our study suggests that the stress-free state of RBCs is a spheroid that is close to a sphere, rather than the biconcave shape applied in existing models (the implication is that the RBC skeleton is pre-stressed in its natural biconcave state). It also suggests that the response of RBCs in low-shear-rate flows may provide a measure to quantitatively determine the distribution of shear stress in the RBC cytoskeleton in the natural state.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3