Author:
Deguchi Kengo,Hall Philip
Abstract
AbstractThe relationship between nonlinear equilibrium solutions of the full Navier–Stokes equations and the high-Reynolds-number asymptotic vortex–wave interaction (VWI) theory developed for general shear flows by Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666) is investigated. Using plane Couette flow as a prototype shear flow, we show that all solutions having $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(1)$ wavenumbers converge to VWI states with increasing Reynolds number. The converged results here uncover an upper branch of VWI solutions missing from the calculations of Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). For small values of the streamwise wavenumber, the converged lower-branch solutions take on the long-wavelength state of Deguchi, Hall & Walton (J. Fluid Mech., vol. 721, 2013, pp. 58–85) while the upper-branch solutions are found to be quite distinct, with new states associated with instabilities of jet-like structures playing the dominant role. Between these long-wavelength states, a complex ‘snaking’ behaviour of solution branches is observed. The snaking behaviour leads to complex ‘entangled’ states involving the long-wavelength states and the VWI states. The entangled states exhibit different-scale fluid motions typical of those found in shear flows.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference19 articles.
1. Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows;Blackburn;J. Fluid Mech.,2013
2. Edge of Chaos in a Parallel Shear Flow
3. Near-Planar Ts Waves and Longitudinal Vortices in Channel Flow: Nonlinear Interaction and Focussing
4. Isoni, A. 2014 Vortex wave interaction theory to understand self-sustaining processes in transitional flows. PhD thesis, Department of Aeronautics, Imperial College London, UK.
5. Snakes and Ladders: Localized Solutions of Plane Couette Flow
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献