Subgrid-scale backscatter in reacting and inert supersonic hydrogen–air turbulent mixing layers

Author:

O’Brien J.,Urzay J.,Ihme M.,Moin P.,Saghafian A.

Abstract

AbstractThis study addresses the dynamics of backscatter of kinetic energy in the context of large-eddy simulations (LES) of high-speed turbulent reacting flows. A priori analyses of direct numerical simulations (DNS) of reacting and inert supersonic, time-developing, hydrogen–air turbulent mixing layers with complex chemistry and multicomponent diffusion are conducted here in order to examine the effects of compressibility and combustion on subgrid-scale (SGS) backscatter of kinetic energy. The main characteristics of the aerothermochemical field in the mixing layer are outlined. A selfsimilar period is identified in which some of the turbulent quantities grow in a quasi-linear manner. A differential filter is applied to the DNS flow field to extract filtered quantities of relevance for the large-scale kinetic-energy budget. Spatiotemporal analyses of the flow-field statistics in the selfsimilar regime are performed, which reveal the presence of considerable amounts of SGS backscatter. The dilatation field becomes spatially intermittent as a result of the high-speed compressibility effect. In addition, the large-scale pressure-dilatation work is observed to be an essential mechanism for the local conversion of thermal and kinetic energies. A joint probability density function (PDF) of SGS dissipation and large-scale pressure-dilatation work is provided, which shows that backscatter occurs primarily in regions undergoing volumetric expansion; this implies the existence of an underlying physical mechanism that enhances the reverse energy cascade. Furthermore, effects of SGS backscatter on the Boussinesq eddy viscosity are studied, and a regime diagram demonstrating the relationship between the different energy-conversion modes and the sign of the eddy viscosity is provided along with a detailed budget of the volume fraction in each mode. A joint PDF of SGS dissipation and SGS dynamic-pressure dilatation work is calculated, which shows that high-speed compressibility effects lead to a decorrelation between SGS backscatter and negative eddy viscosities, which increases for increasingly large values of the SGS Mach number and filter width. Finally, it is found that the combustion dynamics have a marginal impact on the backscatter and flow-dilatation distributions, which are mainly dominated by the high-Mach-number effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3