Author:
Gordillo Leonardo,Mujica Nicolás
Abstract
AbstractParametrically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of these waves using particle image velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is primarily composed of a subharmonic oscillatory component. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which we show to be as important as other crucial nonlinear terms in the current theory. Using vorticity equations, we show that the streaming pattern arises from the coupling of the potential bulk flow with the oscillating boundary layers on the vertical walls. Numerical simulations provide good agreement between this model and experiments.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献