Breakup of a conducting drop in a uniform electric field

Author:

Karyappa Rahul B.,Deshmukh Shivraj D.,Thaokar Rochish M.

Abstract

AbstractA conducting drop suspended in a viscous dielectric and subjected to a uniform DC electric field deforms to a steady-state shape when the electric stress and the viscous stress balance. Beyond a critical electric capillary number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ca}$, which is the ratio of the electric to the capillary stress, a drop undergoes breakup. Although the steady-state deformation is independent of the viscosity ratio $\lambda $ of the drop and the medium phase, the breakup itself is dependent upon $\lambda $ and $\mathit{Ca}$. We perform a detailed experimental and numerical analysis of the axisymmetric shape prior to breakup (ASPB), which explains that there are three different kinds of ASPB modes: the formation of lobes, pointed ends and non-pointed ends. The axisymmetric shapes undergo transformation into the non-axisymmetric shape at breakup (NASB) before disintegrating. It is found that the lobes, pointed ends and non-pointed ends observed in ASPB give way to NASB modes of charged lobes disintegration, regular jets (which can undergo a whipping instability) and open jets, respectively. A detailed experimental and numerical analysis of the ASPB modes is conducted that explains the origin of the experimentally observed NASB modes. Several interesting features are reported for each of the three axisymmetric and non-axisymmetric modes when a drop undergoes breakup.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3