Mixed acoustic–entropy combustion instabilities in gas turbines

Author:

Motheau EmmanuelORCID,Nicoud Franck,Poinsot Thierry

Abstract

AbstractA combustion instability in a combustor terminated by a nozzle is analysed and modelled based on a low-order Helmholtz solver. A large eddy simulation (LES) of the corresponding turbulent, compressible and reacting flow is first performed and analysed based on dynamic mode decomposition (DMD). The mode with the highest amplitude shares the same frequency of oscillation as the experiment (approximately 320 Hz) and shows the presence of large entropy spots generated within the combustion chamber and convected down to the exit nozzle. The lowest purely acoustic mode being in the range 700–750 Hz, it is postulated that the instability observed around 320 Hz stems from a mixed entropy–acoustic mode, where the acoustic generation associated with entropy spots being convected throughout the choked nozzle plays a key role. The DMD analysis allows one to extract from the LES results a low-order model that confirms that the mechanism of the low-frequency combustion instability indeed involves both acoustic and convected entropy waves. The delayed entropy coupled boundary condition (DECBC) (Motheau, Selle & Nicoud, J. Sound Vib., vol. 333, 2014, pp. 246–262) is implemented into a numerical Helmholtz solver where the baseline flow is assumed at rest. When fed with appropriate transfer functions to model the entropy generation and convection from the flame to the exit, the Helmholtz/DECBC solver predicts the presence of an unstable mode around 320 Hz, in agreement with both LES and experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference79 articles.

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3