Direct numerical simulations of turbulent Ekman layers with increasing static stability: modifications to the bulk structure and second-order statistics

Author:

Shah Stimit K.,Bou-Zeid Elie

Abstract

AbstractDirect numerical simulations of stably stratified Ekman layers are conducted to study the effect of increasing static stability on turbulence dynamics and modelling in wall-bounded flows at three moderate Reynolds numbers. The flow field is analysed by examining the mean profiles of wind speed, potential temperature and momentum flux, as well as streamwise velocity and temperature spectra. The maximum stabilizing buoyancy flux that a flow can sustain while remaining fully turbulent is found to depend on the Reynolds number. The flows with the highest Reynolds number display a relatively well-developed inertial range and logarithmic layer, and are found to bear similarities to much higher-Reynolds-number flows like the ones encountered in the atmospheric boundary layer. In particular, the near-wall mean profiles follow the Monin–Obukhov similarity theory. However, several flow features, such as the critical Richardson number and the stress–strain alignment, are found to maintain significant dependence on the Reynolds number. The budgets of turbulence kinetic energy (TKE), vertical velocity variance, momentum and buoyancy fluxes, and temperature variance are analysed. The results indicate that the effect of stability on turbulence is first directly manifested in the vertical velocity variance budget, and results in damping of vertical motions. This then leads to a reduction in the downward transport of horizontal momentum components towards the surface, and consequently to a decrease in the shear production term in the TKE budget: changes in the vertical profile of TKE shear production with increasing Richardson number are significant and have a larger impact on TKE than direct buoyancy destruction. The reduction in vertical velocity variance also results in significant drops in the production terms in the momentum flux, buoyancy flux and temperature variance budgets. Various assumptions and parameters related to low-order turbulence closures are investigated. The results suggest that the vertical velocity variance is a more appropriate parameter than the full TKE on which to base eddy-diffusivity and viscosity models.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3