Author:
Hewitt Duncan R.,Neufeld Jerome A.,Lister John R.
Abstract
AbstractPorous geological formations are commonly interspersed with thin, roughly horizontal, low-permeability layers. Statistically steady convection at high Rayleigh number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ra}$ is investigated numerically in a two-dimensional porous medium that is heated at the lower boundary and cooled at the upper, and contains a thin, horizontal, low-permeability interior layer. In the limit that both the dimensionless thickness $h$ and permeability $\Pi $ of the low-permeability layer are small, the flow is described solely by the impedance of the layer $\Omega = h/\Pi $ and by $\mathit{Ra}$. In the limit $\Omega \to 0$ (i.e. $h \to 0$), the system reduces to a homogeneous Rayleigh–Darcy (porous Rayleigh–Bénard) cell. Two notable features are observed as $\Omega $ is increased: the dominant horizontal length scale of the flow increases; and the heat flux, as measured by the Nusselt number $\mathit{Nu}$, can increase. For larger values of $\Omega $, $\mathit{Nu}$ always decreases. The dependence of the flow on $\mathit{Ra}$ is explored, over the range $2500 \leqslant \mathit{Ra} \leqslant 2\times 10^4$. Simple one-dimensional models are developed to describe some of the observed features of the relationship $\mathit{Nu}(\Omega )$.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献