Transition through Rayleigh–Taylor instabilities in a breaking internal lee wave

Author:

Yakovenko Sergey N.,Thomas T. Glyn,Castro Ian P.

Abstract

AbstractResults of direct numerical simulations of the transitional processes that characterise the evolution of a breaking internal gravity wave to a fully developed and essentially steady turbulent patch are presented. The stationary lee wave was forced by the imposition of an appropriate bottom boundary shape within a density-stratified domain having a uniform upstream velocity and density gradient, and with the ratio of momentum to thermal (or other) diffusivity defined by $\mathit{Pr}=1$. An earlier paper considered the eventual, fully developed turbulent patch arising after the breaking process is complete (Yakovenko et al., J. Fluid Mech., vol. 677, 2011, pp. 103–133); the focus in this paper is on the instabilities in the breaking process itself. The flow is analysed using streamlines, density contours and temporal and spatial spectra, as well as second moments of the velocity and density fluctuations, for a Reynolds number of 4000 based on the height of the bottom topography and the upstream velocity. The computations (on a grid using in excess of $10^{9}$ mesh points) yielded sufficient resolution to capture the fine-scale transition processes as well as the subsequent fully developed turbulence discussed earlier. It is shown that the major instability is of Rayleigh–Taylor type (RTI) with a resulting mixing region depth growing in a manner consistent with more classical RTI studies, despite the much more complicated environment. The resolution was sufficient to capture secondary Kelvin–Helmholtz-type instabilities on the developing RTI structures. Overall evolution towards the fully turbulent state characterised by a significant region of $-\frac{5}{3}$ subrange in both velocity and density spectra is very rapid. It is much faster than the long time scale characterising the subsequent evolution of the turbulent patch; this latter time scale is sufficiently large that the turbulent patch can itself be viewed as essentially steady.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical properties of a model of a turbulent patch arising from a breaking internal wave;Physics of Fluids;2021-05

2. S-N border instability, magnetic flux trapping and cumulative effect during pulsed S-N switching of high quality YBaCuO thin films;Superconductor Science and Technology;2020-08-13

3. Eddy-resolving approaches in study of aerohydrophysical flows with interface, stratification and orography;HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020): Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, dedicated to the 90th anniversary of the birth of RI Soloukhin;2020

4. Development of the Algorithm for Simulating Stratified Flows with Obstacles and Its Verification for a Flow with a Vertical Barrier;Journal of Applied Mechanics and Technical Physics;2019-11

5. Simulation of flows with breaking internal waves generated by an obstacle;Journal of Physics: Conference Series;2019-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3