Entrainment in two coalescing axisymmetric turbulent plumes

Author:

Cenedese C.,Linden P. F.

Abstract

AbstractA model of the total volume flux and entrainment occurring in two coalescing axisymmetric turbulent plumes is developed and compared with laboratory experiments. The dynamical evolution of the two plumes is divided into three regions. In region 1, where the plumes are separate, the entrainment in each plume is unaffected by the other plume, although the two plumes are drawn together due to the entrainment of ambient fluid between them. In region 2 the two plumes touch each other but are not yet merged. In this region the total entrainment is a function of both the dynamics of the touching plumes and the reduced surface area through which entrainment occurs. In region 3 the two plumes are merged and the entrainment is equivalent to that in a single plume. We find that the total volume flux after the two plumes touch and before they merge increases linearly with distance from the sources, and can be expressed as a function of the known total volume fluxes at the touching and merging heights. Finally, we define an ‘effective’ entrainment constant, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\alpha _{eff}$, as the value of $\alpha $ needed to obtain the same total volume flux in two independent plumes as that occurring in two coalescing plumes. The definition of $\alpha _{eff}$ allows us to find a single expression for the development of the total volume flux in the three different dynamical regions. This single expression will simplify the representation of coalescing plumes in more complex models, such as in large-scale geophysical convection, in which plume dynamics are not resolved. Experiments show that the model provides an accurate measure of the total volume flux in the two coalescing plumes as they evolve through the three regions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3