Shock wave–boundary layer interactions in rectangular inlets: three-dimensional separation topology and critical points

Author:

Eagle W. Ethan,Driscoll James F.

Abstract

AbstractThe interaction between two separated flow regions was studied for the fundamental problem of a shock wave–boundary layer interaction (SBLI) within a rectangular inlet. One motivation is that the inlet of an engine on a supersonic aircraft may contain separation zones on the sidewalls and the bottom wall; if one region separates first it can alter the flow on the other wall and lead to engine unstart. In our work an oblique shock wave was generated by a wedge suspended from the upper wall of a Mach 2.75 wind tunnel. Stereo particle image velocimetry (PIV) measurements were recorded in 25 planes that include all three possible orthogonal orientations. The lateral velocity and vorticity measurements help to explain the underlying flow structure and these quantities were not measured previously for this problem. It is concluded that the sidewall and bottom wall separation zones interact due to an underlying flow structure that is similar to the two types of 3-D separation patterns previously described by Tobak & Peake (Annu. Rev. Fluid Mech., vol. 14, 1982, pp. 61–85). Separation first occurs at an upstream location where the shock interacts with the sidewall. Lateral velocities direct flow toward the centreline to cause separation on the bottom wall. This causes significant curvature of the shock wave, so that even the region near the tunnel centreline cannot be explained by conventional 2-D concepts. A number of critical points (saddle points, nodes, focus points) were identified. Results are consistent with the general ideas of Burton & Babinsky (J. Fluid Mech., vol. 707, 2012, pp. 287–306) and help to provide details of how the sidewalls redistribute the adverse pressure gradient in space.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3