Tunable fall velocity of a dense ball in oscillatory cross-sheared concentrated suspensions

Author:

Blanc Frédéric,Lemaire Elisabeth,Peters François

Abstract

AbstractThe fall velocity of a dense large ball in a suspension of neutrally buoyant non-Brownian particles subjected to horizontal oscillatory shear is studied. As the strain amplitude is increased, the velocity increases up to a maximum value before decreasing to the value that it would have in a resting suspension. The higher the frequency is, the stronger the effect is. The falling ball velocity can be largely increased in the presence of the oscillatory cross-shear flow. For instance, for a particle volume fraction of $\varPhi =0.47$ it reaches four times the value it has in the unsheared suspension. At small strain amplitudes, it turns out that the velocity of the falling ball is determined by a balance between the steady drag flow, which drives the apparent suspension viscosity toward a high value, and the oscillatory cross-shear, which lessens it. A simple model is proposed to explain the experimental observations at small strain amplitude. The velocity decrease observed at larger amplitude is not completely understood yet.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting bidisperse particle settling from mono-sized settling systems;Powder Technology;2024-03

2. Rheology of Dense Suspensions under Shear Rotation;Physical Review Letters;2023-03-16

3. Frame-invariant modeling for non-Brownian suspension flows;Journal of Non-Newtonian Fluid Mechanics;2022-11

4. The Physics of Dense Suspensions;Annual Review of Condensed Matter Physics;2022-03-10

5. Settling of heavy particles in concentrated suspensions of neutrally buoyant particles under uniform shear;Fluid Dynamics Research;2018-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3