Abstract
AbstractKolmogorov flow in two dimensions – the two-dimensional (2D) Navier–Stokes equations with a sinusoidal body force – is considered over extended periodic domains to reveal localised spatiotemporal complexity. The flow response mimics the forcing at small forcing amplitudes but beyond a critical value develops a long wavelength instability. The ensuing state is described by a Cahn–Hilliard-type equation and as a result coarsening dynamics is observed for random initial data. After further bifurcations, this regime gives way to multiple attractors, some of which possess spatially localised time dependence. Co-existence of such attractors in a large domain gives rise to interesting collisional dynamics which is captured by a system of 5 (1-space and 1-time) partial differential equations (PDEs) based on a long wavelength limit. The coarsening regime reinstates itself at yet higher forcing amplitudes in the sense that only longest-wavelength solutions remain attractors. Eventually, there is one global longest-wavelength attractor which possesses two localised chaotic regions – a kink and antikink – which connect two steady one-dimensional (1D) flow regions of essentially half the domain width each. The wealth of spatiotemporal complexity uncovered presents a bountiful arena in which to study the existence of simple invariant localised solutions which presumably underpin all of the observed behaviour.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献