Evolution of a turbulent cloud under rotation

Author:

Ranjan A.,Davidson P. A.

Abstract

AbstractLocalized patches of turbulence frequently occur in geophysics, such as in the atmosphere and oceans. The effect of rotation, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\boldsymbol{\Omega}$, on such a region (a ‘turbulent cloud’) is governed by inhomogeneous dynamics. In contrast, most investigations of rotating turbulence deal with the homogeneous case, although inhomogeneous turbulence is more common in practice. In this paper, we describe the results of $512^3$ direct numerical simulations (DNS) of a turbulent cloud under rotation at three Rossby numbers ($\mathit{Ro}$), namely 0.1, 0.3 and 0.5. Using a spatial filter, fully developed homogeneous turbulence is vertically confined to the centre of a periodic box before the rotation is turned on. Energy isosurfaces show that columnar structures emerge from the cloud and grow into the adjacent quiescent fluid. Helicity is used as a diagnostic and confirms that these structures are formed by inertial waves. In particular, it is observed that structures growing parallel to the rotation axis (upwards) have negative helicity and those moving antiparallel (downwards) to the axis have positive helicity, a characteristic typical of inertial waves. Two-dimensional energy spectra of horizontal wavenumbers, $k_{\perp }$, versus dimensionless time, $2 \varOmega t$, confirm that these columnar structures are wavepackets which travel at the group velocities of inertial waves. The kinetic energy transferred from the turbulent cloud to the waves is estimated using Lagrangian particle tracking to distinguish between turbulent and ‘wave-only’ regions of space. The amount of energy transferred to waves is 40 % of the initial at $\mathit{Ro}=0.1$, while it is 16 % at $\mathit{Ro}=0.5$. In both cases the bulk of the energy eventually resides in the waves. It is evident from this observation that inertial waves can carry a significant portion of the energy away from a localized turbulent source and are therefore an efficient mechanism of energy dispersion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3