Author:
Barros Julio M.,Christensen Kenneth T.
Abstract
AbstractThe characteristics of a turbulent boundary layer overlying a complex roughness topography were explored with stereo particle-image velocimetry measurements in the wall-normal–spanwise $(y\mbox{--}z)$ plane. The roughness under consideration was replicated from a turbine blade damaged by deposition of foreign materials containing a broad range of topographical scales arranged in a highly irregular manner. The single-point turbulence statistics displayed strong spanwise heterogeneity, in particular spanwise-alternating low- and high-momentum flow pathways in the mean flow marked by enhanced Reynolds stresses and turbulent kinetic energy. The spanwise regions between high- and low-momentum flow pathways were occupied by swirling motions, suggesting the generation and sustainment of turbulent secondary flows due to the spanwise heterogeneity of the complex roughness under consideration. Similar observations were recently reported for more ordered spanwise roughness transitions by Nugroho, Hutchins & Monty (Intl J. Heat Fluid Flow vol. 41, 2013, pp. 90–102) and Willingham et al. (Phys. Fluids vol. 26, 2014, 025111).
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献