Abstract
AbstractWe study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{We}<1000$ and $\mathit{Re}<2000$ using a combination of numerical simulations and linear stability theory (Agbaglah, Josserand & Zaleski, Phys. Fluids, vol. 25, 2013, 022103). Our simulations faithfully capture this phenomena and are in good agreement with experimental profiles obtained from high-speed X-ray imaging. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. The resulting predictions for the most unstable wavelength are in excellent agreement with experimental data. Our calculations show that the dominant destabilizing mechanism is a competition between capillarity and inertia but that deceleration of the rim provides an additional boost to growth. We also predict over the entire parameter range of our study the number and timescale for formation of secondary droplets formed during a splash, based on the assumption that the most unstable mode sets the droplet number.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference27 articles.
1. Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method
2. Finger formation during droplet impact on a liquid film;Gueyffier;C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron,1998
3. Drop impact entrapment of bubble rings
4. A numerical study on the mechanism of splashing
5. Evolution of the ejecta sheet from the impact of a drop with a deep pool;Zhang;J. Fluid Mech.,2011
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献