Buoyancy scale effects in large-eddy simulations of stratified turbulence

Author:

Khani Sina,Waite Michael L.

Abstract

AbstractIn this paper large-eddy simulations (LES) of forced stratified turbulence using two common subgrid scale (SGS) models, the Kraichnan and Smagorinsky models, are studied. As found in previous studies using regular and hyper-viscosity, vorticity contours show elongated horizontal motions, which are layered in the vertical direction, along with intermittent Kelvin–Helmholtz (KH) instabilities. Increased stratification causes the layer thickness to collapse towards the dissipation scale, ultimately suppressing these instabilities. The vertical energy spectra are relatively flat out to a local maximum, which varies with the buoyancy frequency $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}N$. The horizontal energy spectra depend on the grid spacing $\varDelta $; if the resolution is fine enough, the horizontal spectrum shows an approximately $-5/3$ slope along with a bump at the buoyancy wavenumber $k_b = N/u_{rms}$, where $u_{rms}$ is the root-mean-square (r.m.s.) velocity. Our results show that there is a critical value of the grid spacing $\varDelta $, below which dynamics of stratified turbulence are well-captured in LES. This critical $\varDelta $ depends on the buoyancy scale $L_b$ and varies with different SGS models: the Kraichnan model requires $\varDelta < 0.47 L_b$, while the Smagorinsky model requires $\varDelta < 0.17 L_b$. In other words, the Smagorinsky model is significantly more costly than the Kraichnan approach, as it requires three times the resolution to adequately capture stratified turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3