Identification of ship wake structures by a time–frequency method

Author:

Torsvik T.ORCID,Soomere T.,Didenkulova I.,Sheremet A.

Abstract

AbstractThe wake of a ship that sails at relatively large Froude numbers usually contains a number of components of different nature and with different heights, lengths, timings and propagation directions. We explore the possibilities of the spectrogram representation of one-point measurements of the ship wake to identify these components and to quantify their main properties. This representation, based on the short-time Fourier transform, facilitates a reliable decomposition of the wake into constituent components and makes it possible to quantify their variations in the time–space domain and the energy content of each component, from very low-frequency precursor waves up to high-frequency signals within the frequency range of typical wind-generated waves. A method for estimation of the ship speed and the distance of its sailing line from the measurement site is proposed, which only uses information available within the record of the ship wake surface elevation, but where it is assumed that the wake pattern does not deviate significantly from the classical Kelvin wake structure. The wake decomposition using the spectrogram method allows investigation of the energy content that can be attributed to each individual component of the wake. We demonstrate that the majority (60–80 %) of wake energy from strongly powered large ferries that sail at depth Froude numbers ${\sim}0.7$ is concentrated in components that are located near the edge of the wake wedge. Finally, we demonstrate that the spectrogram representation offers a convenient way to identify a specific signature of single types of ships.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3