Author:
Choueiri George H.,Tavoularis Stavros
Abstract
AbstractFlow visualization, laser Doppler velocimetry and planar and stereoscopic particle image velocimetry were used to investigate the isothermal velocity field along an eccentric annular channel with a diameter ratio of 0.5 and an eccentricity of 0.8 for a Reynolds number of 7300. Observation of the flow development has identified three distinct regions: the entrance region, the fluctuation-growth (FG) region and the rapid-mixing (RM) region. Weak quasi-periodic velocity fluctuations were first detected in the downstream part of the entrance region, and grew into very strong ones, reaching peak-to-peak amplitudes in the narrow gap that were nearly 60 % of the bulk velocity. Two mixing layers were identified on either side of the gap, which generated a street of counter rotating vortices and thorough large-scale mixing of the fluid in the channel.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献