On the wake dynamics of a propeller operating in drift

Author:

Di Mascio A.,Muscari R.,Dubbioso G.

Abstract

AbstractThe onset and the nature of dynamic instabilities experienced by the wake of a marine propeller set in oblique flow are investigated by means of detached eddy simulations. In particular, the destabilization process is inspected by a systematic comparison of the wake morphology of a propeller operating in pure axisymmetric flow and in drift with angle of 20°, under different loading conditions. The wake behaviour in oblique flow shows a markedly different character with respect to the axisymmetric condition: in the latter, the destabilization is triggered by an increasing interaction of the main vorticity confined in the tip vortex; whereas, in the former, the role of the secondary vorticity (oriented in the streamwise direction) as well as the hub vortex seems to be crucial. The features of the wake have been investigated by the $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\lambda _{2}$ criterion (Jeong & Hussain, J. Fluid Mech., vol. 285, 1995, pp. 69–94) and typical flow variables (pressure, velocity and vorticity), for both the averaged and instantaneous flow fields. Moreover, in order to further inspect the evolution of the vortical structures, as well as their interaction and destabilization, the spectra of the kinetic energy have been considered. This investigation aims to broaden the knowledge from previous works on the subject of rotor wake instabilities, focusing on the differences between an ideal (axisymmetric) and actual operating conditions occurring in typical engineering applications.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3