Liquid transfer from single cavities to rotating rolls

Author:

Campana Diego M.,Carvalho Marcio S.

Abstract

AbstractIn this work we study computationally the dynamics of a liquid bridge formed between a two-dimensional trapezoidal cavity, which represents an axisymmetric cell or a plane groove engraved in a roll, and a moving plate. The flow is a model of the liquid transfer process in gravure printing systems. The considered plate kinematics represents the actual motion of a roll-to-roll system, which includes extension, shear and rotation relative to the cavity. The fluid flow is modelled by solving the Stokes equations, discretized with the finite element method; the evolving free surfaces are accommodated by employing a pseudosolid mesh deforming algorithm. The results show that as the roll radius is reduced, thus increasing the lateral and rotational motions of the top plate relative to the cavity, a larger volume of liquid is transferred to the plate. However, due to lateral displacement of the contact lines, special care must be taken concerning the wettability properties of the substrate to avoid errors in the pattern fidelity. The predictions also show a strong nonlinear behaviour of the liquid fraction extracted from a cavity as a function of the capillary number. At high capillary numbers the fluid dynamics is mainly controlled by the extensional motion due to the strong contact line pinning. However, at low values of the capillary number, the contact lines have higher mobility and the liquid fraction primarily depends on the lateral and rotational plate velocity. These mechanisms tend to drag the fluid outside the cavity and increase the liquid fraction transferred to the plate, as has been observed in experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3