On the periodic injection of fluid into, and its extraction from, a confined aquifer

Author:

Dudfield Peter,Woods Andrew W.

Abstract

AbstractWe consider the periodic injection and extraction of fluid from a line well in a horizontal saturated aquifer of finite thickness as part of an aquifer thermal energy storage system. We focus on the case in which the injected fluid is dense relative to the original fluid in the aquifer and we explore the competition between the driving pressure and buoyancy force in controlling the dispersal of the injected fluid through the aquifer. We show that, after each cycle, a progressively larger fraction of the injected fluid is extracted, while the remainder of the injected fluid gradually migrates away from the well such that, after time $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}t$, the position of the leading edge of the injected fluid, $x_{nose}(t)$, scales as $ x_{nose}(t)\sim x_{nose}(\tau )\sqrt{t/\tau }$, where $\tau $ is the period of injection. If the fluid is extracted from the base of the layer, then, near the well, the thickness of the injected fluid at the end of the extraction cycle tends to a constant value, which decreases with injection rate. We also show that there is a class of self-similar exchange-flow solutions that develop when a saturated porous layer of thickness $H$ is in contact with a stratified fluid reservoir, filled to thickness $F_0H<H$ with relatively dense fluid, and with original reservoir fluid above this level. We show that these solutions coincide exactly with the far-field flow produced by the injection–extraction cycles. We successfully test the models with a series of analogue experiments of both the injection–extraction flow and the exchange flow using a Hele-Shaw cell. In the case that the fluid is injected and extracted from the top of the aquifer, the value $F_0$ tends to unity in all cases, although the convergence time depends on the rate and period of injection, the buoyancy speed and the vertical extent and the porosity of the aquifer. We use the model to explore how the concentration of reservoir fluid in the produced fluid varies as the system evolves from cycle to cycle, and we also examine the time required to transport a localised but distant contaminant to the production well through the far-field exchange flow. Finally, we consider the analogous axisymmetric injection–extraction flow problem, and show, through both numerical solution of the governing equations and experiment, that, although there is no simple class of similarity solutions, the fraction of injected fluid that is extracted progressively increases in each cycle.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3