Force acting on a square cylinder fixed in a free-surface channel flow

Author:

Qi Z. X.,Eames I.,Johnson E. R.

Abstract

AbstractWe describe an experimental study of the forces acting on a square cylinder (of width $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}b$) which occupies 10–40 % of a channel (of width $w$), fixed in a free-surface channel flow. The force experienced by the obstacle depends critically on the Froude number upstream of the obstacle, ${\mathit{Fr}}_1$ (depth $h_1$), which sets the downstream Froude number, ${\mathit{Fr}}_2$ (depth $h_2$). When ${\mathit{Fr}}_1<{\mathit{Fr}}_{1c}$, where ${\mathit{Fr}}_{1c}$ is a critical Froude number, the flow is subcritical upstream and downstream of the obstacle. The drag effect tends to decrease or increase the water depth downstream or upstream of the obstacle, respectively. The force is form drag caused by an attached wake and scales as $\overline{F_{D}}\simeq C_D \rho b u_1^2 h_1/2$, where $C_D$ is a drag coefficient and $u_1$ is the upstream flow speed. The empirically determined drag coefficient is strongly influenced by blocking, and its variation follows the trend $C_D=C_{D0}(1+C_{D0}b/2w)^2$, where $C_{D0}=1.9$ corresponds to the drag coefficient of a square cylinder in an unblocked turbulent flow. The r.m.s. lift force is approximately 10–40 % of the mean drag force and is generated by vortex shedding from the obstacle. When ${\mathit{Fr}}_1={\mathit{Fr}}_{1c}\, (<1)$, the flow is choked and adjusts by generating a hydraulic jump downstream of the obstacle. The drag force scales as $\overline{F}_D\simeq C_K \rho b g (h_1^2-h_2^2)/2$, where experimentally we find $C_K\simeq 1$. The r.m.s. lift force is significantly smaller than the mean drag force. A consistent model is developed to explain the transitional behaviour by using a semi-empirical form of the drag force that combines form and hydrostatic components. The mean drag force scales as $\overline{F_{D}}\simeq \lambda \rho b g^{1/3} u_1^{4/3} h_1^{4/3}$, where $\lambda $ is a function of $b/w$ and ${\mathit{Fr}}_1$. For a choked flow, $\lambda =\lambda _c$ is a function of blocking ($b/w$). For small blocking fractions, $\lambda _c= C_{D0}/2$. In the choked flow regime, the largest contribution to the total drag force comes from the form-drag component.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

1. On the flow in channels when rigid obstacles are placed in the stream

2. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes;Tamura;J. Wind Engng Ind. Aerodyn.,1999

3. RATIONAL ASSESSMENT OF BLOCKAGE EFFECT IN CHANNEL FLOW PAST SMOOTH CIRCULAR CYLINDERS

4. Yarnell, D. L. 1934a Pile trestles as channel obstructions. Tech. Rep. 429, US Department of Agriculture, Washington.

5. Sharify, E. M. , Saito, H. , Taikan, H. , Takahashi, S.  & Arai, N. 2012 Experimental and numerical study of blockage effects on flow characteristics around a square-section cylinder. In ISEM-ACEM-SEM-7th ISEM Conference, Taipei, Taiwan.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3