On the derived Lusztig correspondence
-
Published:2023
Issue:
Volume:11
Page:
-
ISSN:2050-5094
-
Container-title:Forum of Mathematics, Sigma
-
language:en
-
Short-container-title:Forum of Mathematics, Sigma
Author:
Laumon Gérard,Letellier Emmanuel
Abstract
Abstract
Let G be a connected reductive group, T a maximal torus of G, N the normalizer of T and
$W=N/T$
the Weyl group of G. Let
${\mathfrak {g}}$
and
${\mathfrak {t}}$
be the Lie algebras of G and T. The affine variety
$\mathfrak {car}={\mathfrak {t}}/\!/W$
of semisimple G-orbits of
${\mathfrak {g}}$
has a natural stratification
$$ \begin{align*} \mathfrak{car}=\coprod_{\lambda}\mathfrak{car}_{\lambda} \end{align*} $$
indexed by the set of G-conjugacy classes of Levi subgroups: the open stratum is the set of regular semisimple orbits and the closed stratum is the set of central orbits.
In [17], Rider considered the triangulated subcategory
$D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {g}}_{\mathrm {nil}}/G])^{\mathrm {Spr}}$
of
$D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {g}}_{\mathrm {nil}}/G])$
generated by the direct summand of the Springer sheaf. She proved that it is equivalent to the derived category of finitely generated dg modules over the smash product algebra
${\overline {\mathbb {Q}}_{\ell }}[W]\# H^{\bullet }_G(G/B)$
where
$H^{\bullet }_G(G/B)$
is the G-equivariant cohomology of the flag variety. Notice that the later derived category is
$D_{\mathrm {c}}^{\mathrm {b}}(\mathrm {B}(N))$
where
$\mathrm {B}(N)=[\mathrm {Spec}(k)/N]$
is the classifying stack of N-torsors.
The aim of this paper is to understand geometrically and generalise Rider’s equivalence of categories: For each
$\lambda $
we construct a cohomological correspondence inducing an equivalence of categories between
$D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {t}}_{\lambda }/N])$
and
$D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {g}}_{\lambda }/G])^{\mathrm {Spr}}$
.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference20 articles.
1. Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes;Borho;C. R. Acad. Sci. Paris,1981
2. Soc;Beilinson;Math. France, Paris,1981
3. Weil Conjectures, Perverse Sheaves and l’adic Fourier Transform
4. Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras
5. Cohomologie Etale
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献