Length functions in Teichmüller and anti-de Sitter geometry

Author:

Mazzoli FilippoORCID,Viaggi GabrieleORCID

Abstract

Abstract We establish a link between the behavior of length functions on Teichmüller space and the geometry of certain anti-de Sitter $3$ -manifolds. As an application, we give new purely anti-de Sitter proofs of results of Teichmüller theory such as (strict) convexity of length functions along shear paths and geometric bounds on their second variation along earthquakes. Along the way, we provide shear-bend coordinates for GHMC anti-de Sitter $3$ -manifolds.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference23 articles.

1. [21] Thurston, W. , ‘Minimal stretch maps between hyperbolic surfaces’, Preprint, 1998, arXiv:math/9801039.

2. Canonical Wick rotations in 3-dimensional gravity;Benedetti;Mem. Amer. Math. Soc.,2009

3. Thurston's Riemannian metric for Teichmüller space

4. [15] Mazzoli, F. , Seppi, A. and Tamburelli, A. , ‘Para-hyperKähler geometry of the deformation space of maximal globally hyperbolic anti-de Sitter three-manifolds’, Preprint, 2021, arxiv:2107.10363. To appear in Memoirs of the American Mathematical Society.

5. [16] Mazzoli, F. and Viaggi, G. , ‘ ${\mathrm{SO}}_0\left(2,n+1\right)$ -maximal representations and hyperbolic surfaces’, Preprint, 2022, arxiv:2206.06946. To appear in Memoirs of the American Mathematical Society.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3