Abstract
Abstract
We prove that the alpha invariant of a quasi-smooth Fano 3-fold weighted hypersurface of index
$1$
is greater than or equal to
$1/2$
. Combining this with the result of Stibitz and Zhuang [SZ19] on a relation between birational superrigidity and K-stability, we prove the K-stability of a birationally superrigid quasi-smooth Fano 3-fold weighted hypersurfaces of index
$1$
.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献