Gluing approximable triangulated categories

Author:

Burke JesseORCID,Neeman AmnonORCID,Pauwels BregjeORCID

Abstract

AbstractGiven a bounded-above cochain complex of modules over a ring, it is standard to replace it by a projective resolution, and it is classical that doing so can be very useful.Recently, a modified version of this was introduced in triangulated categories other than the derived category of a ring. A triangulated category isapproximableif this modified procedure is possible. Not surprisingly this has proved a powerful tool. For example: the fact that$\mathsf {D}_{\mathsf {qc}}( X )$is approximable whenXis a quasi compact, separated scheme led to major improvements on old theorems due to Bondal, Van den Bergh and Rouquier.In this article, we prove that, under weak hypotheses, the recollement of two approximable triangulated categories is approximable. In particular, this shows many of the triangulated categories that arise in noncommutative algebraic geometry are approximable. Furthermore, the lemmas and techniques developed in this article form a powerful toolbox which, in conjunction with the groundwork laid in [16], has interesting applications in existing and forthcoming work by the authors.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference25 articles.

1. [5] Efimov, A. I. , ‘Homotopy finiteness of some dg categories from algebraic geometry’, Preprint, 2017, arXiv:1308.0135v2.

2. Strong generators in $\mathbf{D}^{\mathrm{perf}}(X)$ and $\mathbf{D}^b_{\mathrm{coh}}(X)$

3. [18] Neeman, A. , ‘The categories ${\mathbf{\mathcal{T}}}^c$ and ${\mathbf{\mathcal{T}}}_c^b$ determine each other’, Preprint, 2018, arXiv:1806.06471.

4. Smooth and proper noncommutative schemes and gluing of DG categories

5. [16] Neeman, A. , ‘Triangulated categories with a single compact generator and a brown representability theorem’, Preprint, 2018, arXiv:1804.02240v1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3