THE VALUE OF ROBUST STATISTICAL FORECASTS IN THE COVID-19 PANDEMIC

Author:

Castle Jennifer L.ORCID,Doornik Jurgen A.,Hendry David F.

Abstract

The Covid-19 pandemic has put forecasting under the spotlight, pitting epidemiological models against extrapolative time-series devices. We have been producing real-time short-term forecasts of confirmed cases and deaths using robust statistical models since 20 March 2020. The forecasts are adaptive to abrupt structural change, a major feature of the pandemic data due to data measurement errors, definitional and testing changes, policy interventions, technological advances and rapidly changing trends. The pandemic has also led to abrupt structural change in macroeconomic outcomes. Using the same methods, we forecast aggregate UK unemployment over the pandemic. The forecasts rapidly adapt to the employment policies implemented when the UK entered the first lockdown. The difference between our statistical and theory based forecasts provides a measure of the effect of furlough policies on stabilising unemployment, establishing useful scenarios had furlough policies not been implemented.

Publisher

Cambridge University Press (CUP)

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3