Knot projections and Coxeter groups

Author:

Brunner A. M.,Lee Y. W.

Abstract

AbstractEvery knot admits a special projection with the property that under the projection discs in the canonical Seifert surface project disjointly. Under an isotopy, such a projection can be turned into a connected sum of what we call inseparable projections. The main result is that if there is no band in an inseparable projection with half-twisting number +1 or −1, then the projection is not a projection of the trivial knot. To prove this a non-cyclic Coxeter group is constructed as a quotient of the knot group. The construction is possibly of interest in itself. The techniques developed are applied to give a criterion to decide when an inseparable projection with 3 discs comes from the trivial knot.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Statistics and Probability

Reference8 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clifford Analysis, Dirac Operator and the Fourier Transform;Singular Integrals and Fourier Theory on Lipschitz Boundaries;2019

2. Singular Integral Operators on Closed Lipschitz Curves;Singular Integrals and Fourier Theory on Lipschitz Boundaries;2019

3. The Double Cover of S3 Branched along a Link;Journal of Knot Theory and Its Ramifications;1997-10

4. Geometric quotients of link groups;Topology and its Applications;1992-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3