Author:
Hausen Jutta,Johnson Johnny A.
Abstract
AbstractGiven an R-module M, the centralizer near-ring ℳR (M) is the set of all functions f: M → M with f(xr)= f(x)r for all x ∈ M and r∈R endowed with point-wise addition and composition of functions as multiplication. In general, ℳR(M) is not a ring but is a near-ring containing the endomorphism ring ER(M) of M. Necessary and/or sufficient conditions are derived for ℳR(M) to be a ring. For the case that R is a Dedekind domain, the R-modules M are characterized for which (i) ℳR(M) is a ring; and (ii)ℳR(M) = ER(M). It is shown that over Dedekind domains with finite prime spectrum properties (i) and (ii) are equivalent.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献