Author:
Dubuc Eduardo J.,Penon Jacques
Abstract
AbstractIt is well known that compact topological spaces are those space K for which given any point x0 in any topological space X, and a neighborhood H of the fibre -1 {x0} KXX, then there exists a neighborhood U of x0 such that -1UH. If now is an object in an arbitrary topos, in the internal logic of the topos this property means that, for any A in and B in K, we have (-1AB)=AB. We introduce this formula as a definition of compactness for objects in an arbitrary topos. Then we prove that in the gross topoi of algebraic, analytic, and differential geometry, this property characterizes exactly the complete varieties, the compact (analytic) spaces, and the compact manifolds, respectively.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Reference10 articles.
1. Open covers and infinitary operations in C-rings;Dubuc;Cahiers Topologie Gom. Diffrentielle,1981
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献