Abstract
AbstractIt is shown that a normed linear space admitting (Chebyshev) centers is complete. Then the ideas in the proof of this fact are used to show that every incomplete CLUR (compactly locally uniformly rotund) normed linear space contains a closed bounded convex subset B with the following properties: (a)Bdoes not contain any farthest point; (b)Bdoes not contain any nearest point (to the elements of its complement).
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inscribed centers, reflexivity, and some applications;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1986-12